10 kHz 腔倒空锁模皮秒激光器研究

付 洁¹ 庞庆生¹ 常 亮¹ 艾庆康¹ 陈立元¹ 陈 檬^{1*} 李 港¹ 麻云凤³ 樊仲维^{2,3} 牛 岗² 余 锦³ 刘 洋³ 张 雪³ 康文运⁴ 贺 凯⁴

⁽¹北京工业大学激光工程研究院,北京 100124;²北京国科世纪激光技术有限公司,北京 100085 9 9 中国科学院光电研究院,北京 100080;⁴北京跟踪与通信技术研究所,北京 100094

摘要 将半导体可饱和吸收体(SESAM)锁模技术与腔倒空技术结合,采用半导体端面抽运方式实现了具有高重 复频率、大单脉冲能量的皮秒激光器的运转。从理论上分析了腔倒空锁模输出的机理,建立起腔倒空锁模激光器 运行的物理图像,并对影响激光器倒空率的一些因素进行了研究。实验上,实现端面抽运 Nd:YVO4 晶体的 SESAM 连续锁模后,在锁模腔内插入 BBO 电光调制晶体,获得 10 kHz 腔倒空皮秒锁模脉冲输出。当抽运光功率 为 14.1 W 时,输出锁模脉冲的单脉冲能量为 6.5 μJ,脉冲宽度为 10.4 ps。

关键词 固体激光器;半导体可饱和吸收体锁模激光器;腔倒空技术;皮秒脉冲
 中图分类号 TN248.1
 文献标识码 A doi: 10.3788/AOS201131.0314002

Research on Cavity-Dumping Mode-Locked Laser of Picosecond at 10 kHz

Fu Jie¹ Pang Qingsheng¹ Chang Liang¹ Ai Qingkang¹ Chen Liyuan¹ Chen Meng¹ Li Gang¹ Ma Yunfeng³ Fan Zhongwei^{2,3} Niu Gang² Yu Jin³ Liu Yang³ Zhang Xue³ Kang Wenyun⁴ He Kai⁴

 $^{\prime 1}$ Institute of Laser Engineering, Beijing University of Technology, Beijing 100124, China

² Beijing GK Laser Technology Co., Ltd., Beijing 100085, China

³ Academy of Opto-Electronics, Chinese Academy of Sciences, Beijing 100080, China

⁴ Institute of Tracking and Communication Technology, Beijing 100094, China

Abstract Mode locked and cavity dumping techniques are comtined to get picosecond pulse with high energy at high repetition rate. The mechanism and physical image of cavity-dumping mode-locked laser are analyzed and factors which affect the dumping efficiency of cavity-dumping laser are studied. Cavity-dumping mode-locked laser at repetition rate of 10 kHz can be realized with the help of Nd: YVO₄ SESAM mode-locking and a BBO modulator placed in cavity. When pump power is 14.1 W, pulses with energy of 6.5 μ J are obtained, and the pulse width is about 10.4 ps. This kind of laser will have good prospects for development because high energy pulses can be obtained directly from mode-locked oscillator.

Key words solid-state laser; SESAM mode-locked laser; cavity dumping technique; picosecond pulse OCIS codes 140.0140; 140.3480; 140.3530; 140.4050

1 引

超短脉冲激光器在激光测距、雷达、生物学、激光

光谱学、光电取样技术、高速光纤通信技术、光全息存储技术、激光核聚变、超精细加工和致盲武器等领域

E-mail: lig@bjut.edu.cn

言

* 通信联系人。E-mail: chenmeng@bjut.edu.cn

收稿日期: 2010-06-28; 收到修改稿日期: 2010-10-30

基金项目:国家 863 计划(2008AA031901)资助课题。

作者简介: 付 洁(1981—),女,博士研究生,主要从事超短脉冲激光技术方面的研究。E-mail: fujieb218@hotmail.com 导师简介: 李 港(1950—),男,教授,博士生导师,主要从事超短脉冲及非线性光学等方面的研究。

已有广泛的应用^[1~4]。通常情况下由锁模振荡源直 接产生的皮秒激光脉冲的单脉冲能量较低,一般为纳 焦耳量级^[5,6],从而限制了它在某些领域的应用。为 了获得大能量的皮秒激光脉冲,研究者们探索各种方 法来提高单个皮秒脉冲的能量,通过增加锁模振荡源 的抽运功率^[7]来提高输出脉冲的能量,但一般在百纳 焦耳量级;采用再生放大^[8]或多通放大^[9]可以获得百 微焦耳甚至毫焦耳的皮秒脉冲,但是再生放大系统和 后级放大系统体积庞大、结构较为复杂且造价高,使 得激光器在实际应用中受到了限制。

本文将半导体可饱和吸收体(SESAM)锁模技 术和腔倒空技术结合起来,直接从锁模振荡源中获 得了重复频率为10 kHz、单脉冲能量为微焦耳量级 的皮秒脉冲。由这种方式产生的微焦耳量级¹⁰的 皮秒脉冲不仅可以直接应用于微加工,而且由于单 脉冲能量的提高可以提高高重复频率再生放大的稳 定性^[11],可以作为再生放大系统的种子源。

2 理论分析

腔倒空锁模激光器集锁模脉冲的产生、锁模脉冲 的放大以及锁模脉冲的倒出这三个过程于一体。它 和谐振腔储能调 Q 激光器(电光腔倒空)类似,都是利 用泡克耳斯盒(PC)和偏振片(TFP)实现腔内能量的 最大输出。不同之处在于,在腔倒空锁模系统中,倒 空前腔内建立起来的是稳定的锁模脉冲,而谐振腔 储能调 Q 激光器在倒空前腔内是连续光振荡。

连续锁模脉冲的建立是腔倒空锁模激光器稳定 运转的关键。全固态 SESAM 锁模激光器连续运转 的阈值条件:

$E_{\mathrm{p}}^{2} > F_{\mathrm{sat,L}}A_{\mathrm{L}}F_{\mathrm{sat,A}}A_{\mathrm{A}}\Delta R$,

式中 E_p 为锁模后腔内单脉冲的能量; $F_{sat,L} = h_v/(N_\sigma)$ 为增益介质的有效饱和通量, h_v 为光子能量,N 为光在腔内往返一次的经过增益介质的次数, σ 为增益介质发射截面面积; A_L 为增益介质上的光 斑面积; $F_{sat,A}$ 为 SESAM 的饱和通量; A_A 为聚焦到 SESAM 上的光斑面积; ΔR 为 SESAM 的调制深 度。从上式可以看出要实现稳定的 SESAM 锁模, 需要适当选取受激发射截面大的增益介质以降低增 益介质的饱和通量。同时利用 ABCD 矩阵对谐振 腔进行优化设计,使增益介质上的光斑面积 A_L 和 聚焦到 SESAM 上的光斑面积 A_A 尽可能地小,这 样可以降低激光器连续锁模运转的阈值,从而实现 稳定的连续锁模。

当激光腔内形成稳定锁模且脉冲能量达到最大

值时,利用泡克耳斯盒和偏振片将腔内锁模脉冲倒出。图1为锁模脉冲在谐振腔中振荡并被倒出的过程。

图 1 锁模脉冲被倒出腔外的过程

Fig. 1 Process of cavity dumping of mode-locked pulse

图 1 中 HR 表示激光晶体的全反射面;"↓"表示水平线偏振光,"•"表示垂直线偏振光,"**↓**"表示圆偏振光;*L*。为泡克耳斯盒右端面到 SESAM 的距离,*L*₇ 为 HR 到泡克耳斯盒左端面的距离。

图 1(a)表示锁模脉冲刚通过未加电压的泡克耳 斯盒向 SESAM 传播,此时泡克耳斯盒开始加 1/4 波 长电压;图 1(b)表示锁模脉冲在 SESAM 上反射后再 次通过泡克耳斯盒,此时泡克耳斯盒应完全加上电 压;图 1(c)中,水平偏振的锁模脉冲经过加 1/4 波长 电压的泡克耳斯盒后变为圆偏振光;图 1(d)中,圆偏 振光被激光晶体的全反射面反射;图 1(e)中,被激光 晶体的全反射面反射的圆偏振光再次通过泡克耳斯 盒后变为垂直偏振光,被偏振片反射输出。

由图 1(a),(b)可知,泡克耳斯盒在水平偏振的 锁模脉冲从 SESAM 返回之前应完全加上 1/4 波长 电压。因此, L_6 的最短距离应为 $L_{6min} = CT_1/2$, (C为光在真空中的传播速度; T_1 为泡克耳斯盒从 零电压加到 1/4 波长电压所需的时间)。

由图 1(c)~(e)可知,泡克耳斯盒加上 1/4 波 长电压后,圆偏振态的锁模脉冲应在其加电压的时 间范围内由 HR 反射并再次通过泡克耳斯盒变为 垂直偏振光被偏振片反射输出。因此, L_7 的最长距 离应为 $L_{7max} = CT_2/2 - ln$ (T_2 为泡克耳斯盒所加 1/4 波长电压的时间;l 为 BBO 晶体的长度;n 为 BBO 晶体的折射率)。

由于泡克耳斯盒加压工作一次需要倒出一个脉冲,因此其加压时间不能超过锁模脉冲的时间间隔,即 $T_2 < 2(L_6 + L_7 + ln)/C_{\circ}$

以上分析表明,腔倒空锁模激光器的谐振腔要 合理设计 L₆ 和 L₇ 的长度,这样才能最大限度地提 高倒空率,获得较高能量的单脉冲。

3 实验研究

3.1 实验装置

图 2 为实验装置示意图。实验中采用端面抽运,抽运源为 808 nm 光纤耦合激光器,纤芯直径为 400 μ m。抽运光经两个整形镜聚焦进 Nd: YVO₄ 晶体,晶体尺寸为 3 mm×3 mm×5 mm,*a* 向切割。晶体的前端面镀 808 nm 的增透膜和 1064 nm 的高反射膜;后端面按照布儒斯特角切割,镀 1064 nm 的高透膜。R₁和 R₂ 为平凹镜,镀 1064 nm 全反射膜; HR₁和 HR₂ 均为镀 1064 nm 高反射膜的平面反射镜;泡克耳斯盒中的电光调制晶体为 BBO 晶体,其 1/4 波长电压为 4000 V; TFP 为偏振片。SESAM 的饱和吸收系数为 2%,饱和通量为 50 μ J/cm²,饱和恢复时间小于 10 ps。

图 2 腔倒空锁模皮秒激光器实验装置图 Fig. 2 Experiment setup of cavity dumping modelocked laser of picosecond

3.2 实验结果及分析

3.2.1 腔倒空锁模激光器输出光参数

实验过程中在未给电光晶体加高压脉冲时,仔 细调节谐振腔,使激光器实现稳定的连续锁模,利用 光电管及示波器记录激光器脉冲锁模序列如图 3 所 示,重复频率 66.7 MHz。

精确调节电光晶体的加压时间来控制腔倒空锁 模发生。图 4 为重复频率 10 kHz 的倒空锁模脉冲

图 3 连续锁模脉冲输出

序列,图 5 为单个腔倒空锁模脉冲波形。在抽运功 率 14.1 W 时,获得了 65 mW 的 10 kHz 腔倒空锁 模脉冲(功率计为物科公司 LP-3A 型),单脉冲能量 为 6.5 μJ,输出光的发散角为 0.6 mrad。采用 APE 公司的 PulseCheck 型自相关仪进行了脉冲宽度测 量,图 6 为 10 kHz 腔倒空锁模脉冲的自相关曲线。 按照高斯曲线拟合,脉冲宽度为 10.4 ps。图 7 为光 谱图。

图 4 10 kHz 时的腔倒空输出脉冲序列 Fig. 4 Cavity dumping output pulse sequence at

图 5 10 kHz 时单个腔倒空锁模脉冲波形

图 6 腔倒空锁模脉冲的自相关曲线 Fig. 6 Autocorrelation trace of cavity dumping mode-locked pulse

3.2.2 倒空率影响因素

实验过程中,泡克耳斯盒上的电压直接影响腔 内振荡光的偏振态,从而影响倒出光的能量。当倒 空发生时,腔内脉冲能量迅速降低,输出脉冲能量增 加,此时腔内能量倒出的程度大小即为倒空率。

实验中通过探测图 2 中 HR₁ 全反镜后的漏光可 以看出腔内脉冲在倒空前后的变化过程,图 8(a),(b) 分别为泡克耳斯盒加上 2000 V 及 4000 V 腔倒空时 腔内脉冲波形的变化,此时它们对应的倒空率分别为 30%和 100%。

图 9 为泡克耳斯盒加上 4000 V 电压时,腔倒空脉冲波形的变化。图 9 内上方波形为倒空输出的脉冲波形,两个倒空脉冲的间隔为 100 µs(5 div×20 µs/div),即腔倒空重复频率为 10 kHz,此时泡克耳斯盒所加电压为 1/4 波长电压。图 9 内下方波形为倒空时腔内脉冲波形,图中"stable CWML"表示的是腔内稳定的连续锁模阶段;当发生腔倒空时,腔内锁模脉冲输出,这时候腔内稳定的锁模运转遭到破坏,从而腔内进入非稳定的锁模阶段"non-stable ML",经过一段时间后腔内又恢复至稳定锁模,为下一次倒空做准备。从图 9 还可以看出,泡克耳斯盒加压的时刻对倒空率以及输出脉冲的质量有影响,加压时刻一定要选在腔内形成稳定锁模之后。

图 8 泡克耳斯盒加(a) 2000 V 和(b) 4000 V 电压时示波器监测的倒空率变化

Fig. 8 Different dumping ratio with different voltage (a) 2000 V and (b) 4000 V applied on Pockels cell

- 图 9 腔倒空锁模激光器被倒出脉冲(上方波形)及 腔内脉冲变化(下方波形)过程
- Fig. 9 Cavity dumped pulses (upper trace) and evolution of rest pulses in cavity in resonator (lower trace)

重复频率的不同也会影响到倒空率。对于 Nd: YVO₄晶体,在 10 kHz 的重复频率下倒空率可以达 到 100%(图 8)。当重复频率更高至 400 kHz 时^[9], 倒空率降低至 91%,这是由于 2.5 μs 的时间间隔不 足以使 Nd:YVO₄锁模激光器从腔内零功率开始达 到稳定的锁模状态,只能靠降低倒空率的方法,来得 到稳定的倒空锁模脉冲输出。另外,根据锁模理论 可知,当腔内功率很大、小信号增益很大时,稳定锁 模建立的时间比较短,因此,重复频率增加时,需要 提高抽运强度来缩短达到稳定锁模的时间,这样才 能提高倒空率以获得高能量的皮秒脉冲。

4 结 论

从理论上分析了腔倒空锁模的可能性及其物理 图像。在实验上将 SESAM 锁模技术与电光腔倒空 技术结合起来,采用端面抽运方式实现了高重复频 率的腔倒空锁模运转。当在 14.1 W 的抽运功率 下,获得了 6.5 μJ、重复频率 10 kHz、脉冲宽度 10.4 ps的脉冲输出。通过对实验数据的分析可知, 泡克耳斯盒所加电压值、重复频率以及泡克耳斯盒 的加压时刻都会影响腔倒空锁模激光器的倒空率, 通过实验找到了最佳参数。该系统在长期的实验运 转下,未见器件有损坏。该激光系统结构简单,造价 低,有很好的应用前景,不仅可以直接应用于微加工 一些领域,而且可以作为种子源经过放大获得更大 能量的皮秒脉冲。

参考文献

- 1 K. M. Davis, K. Mirura, N. Sugimoto *et al.*. Writing waveguides in glass with a femtosecond laser [J]. Opt. Lett., 1996, **21**(21): 1792~1731
- 2 G. Gerullo, S. De Silvestri. Ultrafast optical parametric amplifiers[J]. Rev. Sci. Instrum., 2003, 74(1): 1~18
- 3 R. Osellame, S. Taccheo, M. Marangoni *et al.*. Femtosecond writing of active optical wave guides with astigmatically shaped beams[J]. J. Opt. Soc. Am. B, 2003, 20(7): 1559~1567
- 4 Yang Junyi, Ma Hongliang, Lu Bo *et al.*. Raman spectroscopy study of phase transformation of TiO₂ rutile single crystal induced by infrared femtosecond laser [J]. *Acta Optica Sinica*, 2007, 27(10): 1909~1912
- 杨俊毅,马洪良,鲁 波等.飞秒激光诱导二氧化钛金红石单晶 相变的拉曼光谱研究[J].光学学报,2007,**27**(10):1909~1912
- 5 Zhang Bingyuan, Chen Meng, Li Gang et al.. Study on diode-

side-pumped mode-locked laser with semiconductor saturable absorber mirror[J]. Acta Optica Sinica, 2005, **25**(1): 59~62 张丙元,陈 檬,李 港等.激光二极管侧面抽运 Nd: YAG 锁 模激光器的研究[J]. 光学学报, 2005, **25**(1): 59~62

6 Zhang Haikun, Xu Jinlong, Huang Haitao et al.. Passively CW mode-locked Nd: YAG picosecond laser with a partially reflective semiconductor saturable absorber mirror[J]. Chinese J. Lasers, 2010, 37(9): 2400~2403

张海鹍,徐金龙,黄海涛等.透射式 SESAM 实现 Nd: YAG 连续波锁模皮 秒脉 冲激光 [J]. 中国激光, 2010, **37**(9): 2400~2403

- 7 Li Xiao, Wang Yonggang, Zhang Shiqiang *et al.*. Research on side pumped Nd: YVO₄ SESAM mode locked laer [J]. Acta Optica Sinica, 2009, 29(11): 3103~3107
 李 霄, 王勇刚, 张世强等. 半导体可饱和吸收镜被动锁模侧面 抽运 Nd: YAG 激光器研究 [J]. 光学学报, 2009, 29(11): 3103~3107
- 8 David A. Clubley, Angus S. Bell, Graham Friel. High average power Nd: YVO₄ based pico-second regenerative amplifier [C]. SPIE, 2008, 6871: 68711D-1~68711D-7
- 9 V. Kubecek, M. Jelinek, M. Cech et al., 0. 4 mJ quasicontinuously pumped picosecond Nd:GdVO₄ laser with selectable pulse duration[J]. Laser Physics Letters, 2010, 7(2): 130~134
- 10 U. Wegner, J. Meier, M. J. Lederer. Compact picosecond mode-locked and cavity-dumped Nd : YVO₄ laser [J]. Opt. Express, 2009, 17(25): 3049~3058
- 11 Grishin Mikhail, Michailovas Andrejus. Stable picosecond laser at high repetition rate [P]. US: PCT/LT2006/000007, 2006